Tropical cyclones in the Mozambique Channel: Relationships with atmospheric teleconnections

Dr. Corene Matyas Department of Geography, University of Florida

Funding: NSF CAREER Award BCS1053864

Study Goals

- Characterize tropical cyclone (TC) formation and movement in the MC
- Determine if atmospheric teleconnections known to influence TCs within the larger Indian Ocean have similar associations with TCs in the MC

Mozambique Channel (MC) Study Region

Motivation

- Ash and Matyas (2012, *IJOC*) looked at formation and motion in SWIO, ENSO and SIOD, but omitted MC
- Other studies leave out MC too (Jury 1993; Jury *et al.* 1999; Chang-Seng and Jury 2010)
- Some include the MC in their greater sample (Ramsay *et al.* 2012, Mavume *et al.* 2010, Ho *et al.* 2006)
- Matyas and Silva (2013, Nat. Haz.); Silva and Matyas (2014, WCaS): impacts from 2 MC TCs on subsistence farmers in rural Mozambique

Ash and Matyas Intl. J Climatology Published online Nov. 2010 DOI: 10.1002/joc.2249

No SIOD or ENSO Association

+SIOD La Niña

-SIOD El Niño

Data and Methods

- 1980-2010; formation within the MC
- TC positions: IBTrACS v03r04 (Knapp *et al.* 2010)
- Track attributes calculated in GIS: sinuousity, heading from start to end point, turn ratio (/)
- NCEP-NCAR reanalysis data: SST, geopotential heights/anomalies 500 hPa, 200-850 hPa u/v shear, precipitable water, velocity potential 200 hPa
- Data taken from grid cell where TC formation occurred
- Teleconnection values
- Nonparametric statistical tests

El Niño Southern Oscillation

- Oceanic Niño Index (ONI)
- Monthly, 1950 present

 3-month running mean of ERSST.v3b SST anomalies (1981-2010) in the region 5°N-5°S, 120°-170°W

IOSD + and SAM +

Image from Lovenduski (2006)

0.8

0.6

04

-02

-0.2

-0.4

-0.6

-0.8

- Behera and Yamagata (2001)
- SST anomalies 29°–10°S, 85°– 105°E and 42°–30°S, 50°–80°E
- Monthly, 1958 2007

- Nan and Li (2003)
- Diff. in normalized zonal mean SLP 40 - 70° S

180°W

• Monthly, 1948 - present

MJO representation

1980-2010: 40 TCs and 21 landfalls

Formation Frequency: X² Test

Phase Count	Phase Count	Phase Count	X ²	<i>p</i> -value
El Niño 10	Neutral 17	La Niña 13	1.850	0.397
IOSD + 20	IOSD - 16		0.444	0.505
SAM + 26	SAM- 14		3.600	0.058
Vel. Pot 32	Vel. Pot + 8		14.400	0.000
RMM2 - 20	RMM2 + 20		0.000	1.000

Track Attributes

Spearman's Rank Correlation Coefficients

Significant at α **0.01** 0.05 0.10

Variables	Formation Latitude		
Midpoint Latitude	0.632		
SST	0.435		
TC Forward Speed	-0.427		
Zonal Shear	-0.340		
SAM	-0.326		
Sinuousity	0.316		
IOSD	-0.295		

Spearman's Rank Correlation Coefficients

Variable	Sinuousity	nuousity Heading	
Heading	0.447		
Start Latitude	0.316		
Start Longitude	0.396	0.287	0.264
Midpoint Longitude		-0.565	
Midpoint Latitude	0.319		
End Longitude	-0.391	-0.638	0.283
End Latitude	0.369		
Duration	0.459		
Speed	-0.352		
Precip. Water	0.350		
Zonal Shear 200 – 850 hPa		-0.416	0.287
IOSD*	-0.419		
200 hPa Velocity Potential	-0.302		

n=36 rather than 40 for the IOSD result.

Spearman's Rank Correlation Coefficients

Variables	IOSD*	ONI	SAM	Vel. pot.
Starting longitude	-0.387			
Midpoint latitude	-0.300			
Ending latitude	-0.292			
Sinuousity	-0.419			-0.302
Precipitable water				-0.360
Geopot. Height 500 hPa		0.343		
Height anomaly 500 hPa		0.445		
Zonal shear		-0.337	0.376	
SST				-0.371
RMM2				0.659

*n=36 rather than 40 for the IOSD result.

Conclusions

- +IOSD: formation S/W, less curved
- +SAM: formation S, strong westerly shear
- El Nino: higher GPH/anom, weak/easterly shear
- MJO (- RMM2): highly correlated with 200 hPa velocity potential as expected
- 200 hPa velocity potential: more frequent formation, higher PW, more curved, higher SSTs

- Revised manuscript under review as of 1/17/2014 Matyas, C. J. Tropical cyclone formation and motion in the Mozambique Channel, *Intl. J of Climatology* (examines 1948-2010)
- Silva, J. A. and Matyas, C.J. Relating rainfall patterns to agricultural income: Implications for rural development in Mozambique, *Weather, Climate and Society*, DOI:10.1175/WCAS-D-13-00012.1, in press.
- Matyas, C.J. and Silva, J.A. 2013. Extreme weather and economic well-being in rural Mozambique. *Natural Hazards*, 66, 31-49, DOI: 10.1007/s11069-011-0064-6.
- Ash, K.D. and Matyas, C.J. 2012. The influences of ENSO and the Subtropical Indian Ocean Dipole on tropical cyclone trajectories in the South Indian Ocean. *International Journal of Climatology*, 32:1, 41-56, DOI: 10.1002/joc.2249.

Email: matyas@ufl.edu